Gravitational wave background from sub-luminous GRBs: prospects for second- and third-generation detectors
نویسندگان
چکیده
We assess the detection prospects of a gravitational wave background associated with subluminous gamma-ray bursts (SL-GRBs). We assume that the central engines of a significant proportion of these bursts are provided by newly born magnetars and consider two plausible GW emission mechanisms. First, the deformation-induced triaxial GW emission from a newly born magnetar. Secondly, the onset of a secular bar-mode instability, associated with the longlived plateau observed in the X-ray afterglows of many gamma-ray bursts. With regards to detectability, we find that the onset of a secular instability is the most optimistic scenario: under the hypothesis that SL-GRBs associated with secularly unstable magnetars occur at a rate of (48–80) Gpc−3 yr−1 or greater, cross-correlation of data from two Einstein Telescopes (ETs) could detect the GW background associated to this signal with a signal-to-noise ratio of 3 or greater after 1 year of observation. Assuming neutron star spindown results purely from triaxial GW emissions, we find that rates of around (130–350) Gpc−3 yr−1 will be required by ET to detect the resulting GW background. We show that a background signal from secular instabilities could potentially mask a primordial GW background signal in the frequency range where ET is most sensitive. Finally, we show how accounting for cosmic metallicity evolution can increase the predicted signal-to-noise ratio for background signals associated with SL-GRBs.
منابع مشابه
Searching for gravitational waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) detectors have reached their design sensitivity, and searches for gravitational waves are ongoing. We highlight current attempts to detect various classes of signals. These include unmodelled sub-second bursts of gravitational radiation, such as from core-collapse supernovae and gamma-ray burst engines. Gravitational waves from isol...
متن کاملCorrelated magnetic noise in global networks of gravitational-wave detectors: Observations and implications
One of the most ambitious goals of gravitational-wave astronomy is to observe the stochastic gravitational-wave background. Correlated noise in two or more detectors can introduce a systematic error, which limits the sensitivity of stochastic searches. We report on measurements of correlated magnetic noise from Schumann resonances at the widely separated LIGO and Virgo detectors. We investigate...
متن کاملQND measurements for future gravitational-wave detectors
Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit, a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the Standard Quantum Limit significantly...
متن کاملCorrelated magnetic noise in global networks of gravitational-wave interferometers: observations and implications
One of the most ambitious goals of gravitational-wave astronomy is to observe the stochastic gravitational-wave background. Correlated noise in two or more detectors can introduce a systematic error, which limits the sensitivity of stochastic searches. We report on measurements of correlated magnetic noise from Schumann resonances at the widely separated LIGO and Virgo detectors. We investigate...
متن کاملProspects for direct detection of circular polarization of gravitational-wave background
We discussed prospects for directly detecting circular polarization signal of gravitational wave background. We found it is generally difficult to probe the monopole mode of the signal due to broad directivity of gravitational wave detectors. But the dipole (l = 1) and octupole (l = 3) modes of the signal can be measured in a simple manner by combining outputs of two unaligned detectors, and we...
متن کامل